Parent Fluency Workshop

Year 2
The aims of this workshop are to:

* Help you understand what **fluency** in Maths is.

* **Games** and **ideas** on how you can help your child at home to **improve** these skills.
In Year 2

Mathematics: Place Value & 4 Operations

- **by the end of the year:**
 - Compare and order numbers up to 100 and use < > =
 - Read and write all numbers to 100 in digits & words
 - Say 10 more/less than any number to 100
 - Count in steps of 2, 3 & 5 from zero and in 10s from any number (forwards and backwards)
 - Recall and use multiplication & division facts for 2, 5 & 10 tables
 - Recall and use +/- facts to 20
 - Derive and use related facts to 100
 - Recognise place value of any 2-digit number
 - Add & subtract:
 - 2-digit nos & ones
 - 2-digit nos & tens
 - Two 2-digit nos
 - Three 1-digit nos
 - Recognise and use inverse (+/-)
 - Calculate and write multiplication & division calculations using multiplication tables
 - Recognise, find, name and write 1/3; 1/4; 2/4; 3/4
 - Write and recognise equivalence of simple fractions
 - Tell time to five minutes, including quarter past/to

These are all the skills you can help develop at home.
Place Value is key to children's understanding of all aspects of Maths

less than greater than equal to

Use these mathematical symbols to compare and talk about place value

23 32
3 + 6 9
76 66 +11
Using a 100 Square

Lots of work on:
* reading and then writing the number
* one more, one less
* 10 more, 10 less
* Counting in 2s, 5s or 10s
* Counting backwards and forwards

The aim is for children to be able to visualise the number square in their minds.
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

Can you help me put these numbers in order from smallest to biggest?

15 45 65 13

4 23 10 11
Part - Whole

cherry diagram

\[7 + 8 = 15 \]
\[15 = 8 + 7 \]

We also support maths concepts by using visual representations

& Bar Model

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>
Using the 10 Frame - they started to use these in Year 1

How many yellow counters? How many red counters? How many altogether?

Writing simple calculations:

\[
\begin{align*}
4 + 6 &= 10 & 10 &= 6 + 4 & 10 - 6 &= 4 \\
6 + 4 &= 10 & 10 &= 4 + 6 & 10 - 4 &= 6
\end{align*}
\]
They will continue to be used like this...

There are \underline{14} red counters
There are \underline{6} blue counter
Altogether there are \underline{20} counters.

\[
\frac{14}{6} + \frac{6}{14} = 20
\]
And this...

\[\begin{align*}
3 + 7 &= \quad 13 + 7 = \\
2 + 8 &= \quad 12 + 8 = \\
1 + 9 &= \quad 11 + 9 = \\
4 + 6 &= \quad 14 + 6 = \\
5 + 5 &= \quad 15 + 5 = \\
9 + 1 &= \quad 19 + 1 =
\end{align*}\]
Using a Number Line

Number lines are introduced with numbers on them already and children are taught to **count on** from the **biggest number** in jumps of one.

addition

\[5 + 8 = 13 \]

Number lines are introduced with numbers on them already and children are taught to **count backwards** from the **biggest number** in jumps of one.

subtraction

\[14 - 6 = 8 \]
Then children are taught to create their own number line and then use it for addition and subtraction...

Using a Number Line

36 + 25 = 61

34 - 12 = 22

addition

subtraction
Problem Solving - you can do this by creating stories together...

Class 3 has 37 pencils.
Class 4 has 43 pencils.

How many pencils do they have altogether?

Katie has 12 marbles.

Jim has 13 marbles more than Katie.

How many marbles do they have altogether?
MAKE IT FUN!

Using Dice

- rolling dice and asking about number bonds
- adding together
- subtracting
- roll and create 2 digit number and then add or subtract a one digit number. Extend by adding 2 digits + 2 digits
 2 digits - 1 digit
Playing Games

4 rolls to 100!

\[+ \quad + \quad + \quad + \quad = \]

\[+ \quad + \quad + \quad + \quad = \]
Reminders...

ICT Games-
Click on this picture for whole website
Click on Maths

But also useful for English

Interactive Resources

username: primrose
password: primrosehill

Google Classroom

Home Learning Activities
Thank you for coming!

Questions?